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ABSTRACT

The Early Data Release (EDR) from the Sloan Digital Sky Survey provides one of the largest multicolor
photometric catalogs currently available to the astronomical community. In this paper we present the first
application of photometric redshifts to the�6million extended sources in these data (with 1.8 million sources
having r0 < 21). Utilizing a range of photometric redshift techniques, from empirical to template and hybrid
techniques, we investigate the statistical and systematic uncertainties present in the redshift estimates for the
EDR data. For r0 < 21, we find that the redshift estimates provide realistic redshift histograms with an rms
uncertainty in the photometric redshift relation of 0.035 at r0 < 18 and rising to 0.1 at r0 < 21. We conclude
by describing how these photometric redshifts and derived quantities, such as spectral type, rest-frame colors,
and absolute magnitudes, are stored in the SDSS database. We provide sample queries for searching on
photometric redshifts and list the current caveats and issues that should be understood before using these
photometric redshifts in statistical analyses of the SDSS galaxies.
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1. INTRODUCTION

From their inception (Koo 1985; Connolly et al. 1995;
Gwyn & Hartwick 1996; Sawicki, Lin, & Yee 1997; Hogg et
al. 1998; Wang, Bahcall, & Turner 1998; Fernández-Soto,
Lanzetta, & Yahill 1999; Benı́tez 2000; Csabai et al. 2000;
Budavári et al. 2000) photometric redshifts have been seen
as an efficient and effective means of studying the statistical
properties of galaxies and their evolution. They are essen-
tially a mechanism for inverting a set of observable parame-
ters (e.g., colors) into estimates of the physical properties of
galaxies (e.g., redshift, type, and luminosity). To date, pho-
tometric redshifts have typically been employed on small
multicolor photometric surveys such as the Hubble Deep
Field (HDF, Williams et al. 1996). While these applications
have demonstrated the power of the estimated redshifts in
studying galaxy evolution, they have an underlying limita-
tion. The cosmological volumes probed by the narrow pen-
cil-beam surveys are small, and consequently it is not clear
whether these data provide a representative sample of the
universe. With the development of large wide-field survey
cameras, this volume limitation can be overcome and large

statistically complete studies of the properties of galaxies
can be undertaken.

One of the largest ongoing multicolor photometric sur-
veys currently underway is the Sloan Digital Sky Survey
(SDSS, York et al. 2000). This imaging and spectroscopic
survey provides an ideal base from which to apply photo-
metric redshifts to large samples of galaxies. In the Early
Data Release (EDR, Stoughton et al. 2002) there are over
6 million galaxies, an order-of-magnitude increase in sample
size when compared with existing public multicolor surveys.
From these galaxies there are approximately 35,000 galaxies
with published spectroscopic redshifts from which to deter-
mine the statistical and systematic uncertainties in the SDSS
photometric redshift relation.

In this paper we describe the first application of photo-
metric redshifts to the SDSS data. We provide a back-
ground to the redshift estimation techniques but do not go
into the technical details of the individual methods. We
focus on providing the astronomical community with
details of how to use the photometric redshifts in the SDSS
EDR database and emphasize the caveats and limitations
present in the current photometric redshift catalog (due to
photometric errors and uncertainties in the SDSS zero
points). We plan to have a more detailed analysis of system-
atic errors on the soon-to-appear Data Release 1, where
most of these problems will be eliminated. Sample queries
for the EDR database are provided in x 6.1, together with
details of value added parameters that can be derived from
the photometric redshifts, such as rest-frame colors, k-
corrections, and absolute magnitudes.

2. THE EARLY SDSS DATA RELEASE

In this section we provide a brief description of the Early
Data Release (Stoughton et al. 2002) of the SDSS and intro-
duce the subsets of the data that will be used throughout this
paper. The EDR has five-band photometry (Fukugita et al.
1996; Gunn et al. 1998; Smith et al. 2002; Hogg et al. 2001;
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Pier et al. 2002) for over 6 million galaxies, out of which 1.8
million galaxies have r0 < 21. The five filters of the u0, g0, r0,
i0, z0 system have effective wavelengths of 3540, 4750, 6222,
7632, and 9049 Å, respectively, and the goal of the survey is
to achieve a level of photometric uniformity and accuracy
such that the systemwide rms errors in the final SDSS pho-
tometric catalog will be less than 0.02 mag in r0, 0.02 mag in
r0�i0 and g0�r0, and 0.03 mag in u0�g0 and i0�z0, for objects
bluer than anM0 dwarf. All analyses in this paper are based
on the dereddened model magnitudes in the EDR data set.
A relatively small subset of these galaxies (>30,000) have
measured redshifts. The objects for spectroscopic observa-
tion were selected using the SDSS target-selection algo-
rithm, which is discussed in detail in Stoughton et al. (2002)
and Strauss et al. (2002). This selection algorithm results in
two subsets of the SDSS data, a main galaxy sample and a
luminous red galaxy (LRG) sample (Eisenstein et al. 2001).
The main galaxy sample contains 27,797 galaxies, with a
mean redshift of z = 0.116 and a photometric limit of
r0 = 18. The LRG sample was selected from galaxies with
colors similar to that of an elliptical galaxy and contains
6698 galaxies, with a mean redshift of z = 0.227 (though
extending out to z > 0.5). The redshift histograms of these
two subsets of the data are given in Figure 1, and they
demonstrate that the main sample should provide a good
training/test set out to z = 0.2, and the LRG data set out to
z = 0.5.

In order to test the accuracy of the photometric redshifts
derived from the SDSS, we supplement the SDSS redshifts
with a subset of galaxies selected from published redshift
catalogs. At low redshift and for bright magnitudes, the 2dF
Galaxy Redshift Survey (Colless et al. 2001) contains 5642
galaxies for which we have matching SDSS photometry.
These galaxies have a limiting magnitude of approximately
r0 = 18.5 and a mean redshift of z = 0.112. The redshift
range sampled by these galaxies is therefore well matched to

that of the SDSS redshift catalog, with a limiting redshift of
approximately z = 0.2. At higher redshifts and for fainter
magnitudes the Canada Network for Observational Cos-
mology (CNOC2) survey (Yee, Ellingson, & Carlberg 1996)
has a magnitude limit of approximately r0 < 21.0, with a
mean redshift of z = 0.274 and upper redshift limits of
approximately z = 0.7. The photometric depth of the 2697
galaxies in the CNOC2 sample provides not just a test of the
accuracy of the photometric redshifts but also a measure of
how the redshift uncertainties scale with magnitude limit.
We designate these ‘‘ blind ’’ test samples as ‘‘ 2dF ’’ for the
low-redshift samples and ‘‘ CNOC2 ’’ for the CNOC2 data.

In the following sections we will use the main EDR and
the EDR LRG samples as training sets and all of the above
data sets as test sets.

3. STANDARD PHOTOMETRIC
REDSHIFT TECHNIQUES

A wide range of techniques has been employed in the liter-
ature to estimate redshifts of galaxies with broadband pho-
tometric colors. Approaches have ranged from the purely
empirical relations to comparisons of the colors of galaxies
with the colors predicted from galaxy spectral energy distri-
butions. Each approach has its own set of advantages and
disadvantages. Empirical approaches, where the color-
redshift relations are derived directly from the data them-
selves, are relatively free from possible systematic effects in
the photometric calibration. As such, they provide a simple
measure of the statistical uncertainties with the data and can
demonstrate the accuracy to which we should be able to esti-
mate redshifts once we can control the systematic errors.
Their underlying disadvantage is that we can typically only
apply these relations to galaxies with colors that lie in the
range of colors and redshifts found in the training set. Tem-
plate-based techniques are free from the limitation of a train-
ing set and can be applied over a wide range of redshifts and
intrinsic colors. They rely, however, on having a set of galaxy
templates that accurately map the true distribution of galaxy
spectral energy distributions (and their evolution with red-
shift) and on the assumption that the photometric calibra-
tion of the data is free from systematics.

In this section we consider both empirical and template-
based approaches to photometric redshift estimation for
SDSS data. We demonstrate the redshift accuracy that it
should be possible to achieve from the EDR sample and
describe the current limitations of using standard galaxy
spectral energy distributions.

3.1. Empirical Redshift EstimationMethods

We consider here the standard empirical redshift estima-
tion techniques that have been used in the literature (Con-
nolly et al. 1995; Wang et al. 1998; Brunner, Connolly, &
Szalay 1999) and develop a new technique based on a hier-
archical indexing structures (kd-trees, Moore, Schneider, &
Deng 1997). One of the first successful empirical methods is
based on fitting a functional form for the relation between
the spectroscopic redshift of a galaxy and its colors or mag-
nitudes (Connolly et al. 1995). This function is typically a
second- or third-order polynomial. Figure 2 shows the pho-
tometric versus the spectroscopic redshifts, using the EDR
main galaxy and LRG spectroscopic samples. As the size of
the training set is large (>30,000) when compared with the

Fig. 1.—Spectroscopic redshift histogram for the SDSSmain EDR (solid
line), the EDR LRG (long dashed line), the 2dF (short dashed line), and the
CNOC2 sets.
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number of the fitted parameters (21), we can expect that this
fit will work for other objects with the same dispersion, as
seen in Figure 2 (as long as the data are selected over the
same sample color and redshift range as the training set).
The dispersion in this photometric redshift relation is
�z = 0.027 (see Table 1 for comparison with other values).
One possible uncertainty in this technique comes from the
fact that the fitting function is just an approximation of the
(possibly) more complex relation between the colors and the
redshift of a galaxy. We would therefore expect the fitting

function to accurately follow the redshift-color relation over
a narrow range of redshift. A technique to avoid this is to
use separate functions in different redshift (Brunner et al.
1999) or color ranges.

A second (and possibly the simplest) empirical estimator
is the nearest-neighbor method. For a test galaxy, this finds
the galaxy in the training set with the smallest distance in
the color (or magnitude) space (weighted by the errors). The
redshift of this closest match is then assigned to the test gal-
axy. In the ideal case the training set contains a sufficient

Fig. 2.—Photometric redshift estimations with the simple empirical methods

TABLE 1

Errors on Photometric Redshifts

EstimationMethod rms log Iterated

Nonoutliers

(%)

Polynomial ......................................... 0.0318 0.0277 0.0273 98.0

Nearest neighbor................................. 0.0365 0.0321 0.0327 98.5

Kd-tree ............................................... 0.0254 0.0224 0.0226 98.4

CWW.................................................. 0.0666 0.0598 0.0621 99.1

Bruzual-Charlot.................................. 0.0552 0.0501 0.0509 99.2

Bayesian ............................................. 0.0476 0.0415 0.0422 98.4

CWWLRG ........................................ 0.0473 0.0332 0.0306 97.1

Repaired LRG.................................... 0.0476 0.0319 0.0289 96.5

Interpolated ........................................ 0.0451 0.0359 0.0352 97.7

2dF ..................................................... 0.0528 0.0455 0.0433 97.1

CNOC2 .............................................. 0.1358 0.0989 0.0842 93.0

CNOC2 17.8 < r < 19.5 ..................... 0.0801 0.0614 0.0614 97.1

Notes.—We list three different estimated rms values in the table. The first is the usual
standard deviation �rms computed for all galaxies as defined by �2rms = hDz2i, where
Dz = zspec � zphot. The standard deviation is very sensitive to outliers; it is a common trick
to assign less weight to them by defining another quantity that measures the scatter in a
more reliable way: �2log ¼ A2 log 1þ Dz2=A2ð Þh i, where A is a large number compared with
Dz. We useA2 ¼ 20� Dz2med, whereDzmed is themedian.Without outliers, �rms and �log were
basically same, because � � log(1 + �) for small � values, but large outliers only affect the
standard deviation dramatically. Another way of suppressing the effect of outliers is exclud-
ing them. The last rms column (�z; we use this values in the text) lists the standard deviation
for galaxies that are within the 3 � limits of the distribution, which often has a value similar
to �log. The very last column of the table shows the fraction of galaxies included in the 3 �
limit.
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number of galaxies that for each unknown object there is a
close neighbor. In Figure 3 we show that redshift estimation
error increases with the distance from the nearest neighbor
in color space. The larger the data set, the more accurate this
method becomes, as long as all galaxy types are represented
in the training set. From the technical viewpoint, larger
training sets mean that the search time increases, so one has

to use an efficient multidimensional search technique (e.g.,
kd-trees) instead of a standard linear search. The compari-
son between the estimated and spectroscopic redshifts for
the nearest-neighbor technique is given in Figure 2. The dis-
persion about this relation is �z = 0.033.

A natural limitation of the nearest-neighbor technique is
that a large number of training galaxies alone is not enough;
they must cover the range of the colors of the unknown
objects in a more or less uniform way. Unfortunately, this is
usually not the case. To resolve this problem, one can search
for more than one nearest neighbor and apply an interpola-
tion or a fitting function. This also helps resolve a second
problem, namely, that, because of the finite number of
objects in the training set, the photometric redshifts will
have discrete values, making them problematic to use in
some statistical studies. We have created a hybrid version of
these two empirical methods: we partitioned the color space
into cells containing the same number of objects from the
training set, using a kd-tree tree (a binary search tree,
Bluntly 1979). In each cell we fitted a second-order poly-
nomial. The results, together with a demonstration of a
two-dimensional version of the kd-tree partitioning of the
EDR training set, are given in Figure 4. The dispersion
about this relation is �z = 0.023.

For each of these approaches the resulting dispersion in
the photometric redshift relation is found to be approxi-
mately 0.03 (see Table 1), with the hybrid method being
marginally more accurate. As these empirical approaches
do not rely on the absolute photometric calibration of the
data (other than that the calibration should be stable across
the data sets), they are somewhat insensitive to systematic
errors in the data. If the SDSS redshifts (or external redshift
samples) sampled the full redshift range of the data to the
limit of the survey, these empirical techniques would pro-
vide an ideal mechanism for deriving redshift estimates for
the SDSS. As the redshift range of the spectroscopic sam-
ples are fairly limited, the application of these techniques to

Fig. 3.—Dependence of redshift average estimation error on the color
space distance from the nearest reference object (solid line). As expected,
smaller distances result smaller error. The dashed line is for the histogram
of number of objects with a given nearest neighbor distance. One can see
that for most of the objects the nearest neighbor is not close enough to get
the best estimation.

Fig. 4.—Right: Plot of two-dimensional demonstration of the color space partitioning. In each of these cells we applied the polynomial-fitting technique to
estimate redshifts.Left: Results.
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the full data set is nontrivial. We can, however, use these
results to demonstrate that the accuracy we should be able
to derive from the template-based techniques (once any sys-
tematics in the data are accounted for) should be �z � 0.03
at r0 < 18.

3.2. Template-Based Redshift EstimationMethods

As noted previously, the advantages of using templates to
estimate redshifts of galaxies (Koo 1985; Gwyn & Hartwick
1996; Sawicki, Lin, & Yee 1997; Connolly et al. 1999;
Fernández-Soto et al. 1999; Benı́tez 2000; Bozonella,
Miralles, & Pelló 2000; Budavári et al. 1999; Budavári et al.
2000; Csabai et al. 2000) are numerous. This approach sim-
ply compares the expected colors of a galaxy (derived from
template spectral energy distributions) with those observed
for an individual galaxy. The standard scenario for template
fitting is to take a small number of spectral templates T (e.g.,
E, Sbc, Scd, and Irr galaxies) and choose the best fit by opti-
mizing the likelihood of the fit as a function of redshift, type,
and luminosity p(z, T, L). Variations on this approach have
been developed in the last few decades, including ones that
use a continuous distribution of spectral templates, enabling
the error function in redshift and type to be well defined.

A representative set of spectrophotometrically calibrated
spectral templates is not easy to obtain. One problem with
measured spectra is that to calibrate them spectrophoto-
metrically over the full spectral range is nontrivial. A second
problem is that, because of the redshift of a galaxy, we need
spectra over a wavelength range that is wider than the range
of our optical filters (3000–12000 Å). Such spectra cannot
currently be measured by a single spectrograph. Third, even
if we could measure calibrated spectra over the required
range, spectrographs, especially modern multifiber ones,
usually sample only the central region of the galaxy, while
photometric measurements integrate over the full spatial
extent of a galaxy. The alternative to empirical templates is
to use the outputs of spectral synthesis models. The accu-
racy of spectral models is improving (Bruzual & Charlot
1993), but they are not yet as accurate as direct measure-
ments of galaxy spectra. Modern surveys will improve on
this situation (e.g., the SDSS will measure spectrophotomet-
rically calibrated spectra for a million objects in the 3800–
9200 Å range at a resolution R = �/D� of about 1800), but
to date there does not exist an optimal set of galaxy spectral
templates.

The most frequently used set of spectral energy distribu-
tions (SEDs) used in photometric redshift analyses are those
from Coleman, Wu, & Weedman (1980, hereafter CWW;
see also Bolzonella et al. 2000). In Figures 5 and 6 we dem-
onstrate the results of the template-fitting technique using
the CWW templates and a set of SEDs from the spectral
synthesis models of Bruzual & Charlot (1993). The disper-
sion about this relation is 0.062 and 0.051 for the CWW and
BC templates, respectively. While this is only a factor of 2
worse than that achieved by the empirical methods, there
appear to be systematic deviations in these photometric red-
shift relations. The CWW templates produce a photometric
redshift relation where the majority of galaxies have a sys-
tematically lower redshift than that given by the spectro-
scopic data (by approximately 0.03 in redshift), and there
exists a broad tail of galaxies for which the photometric red-
shifts are systematically overestimated. For the BC tem-
plates the galaxy redshifts tend to be systematically

underestimated (with this effect becoming more pronounced
as a function of redshift out to redshifts z = 0.3).

An improvement over standard template methods, which
rely uniquely on the galaxy colors, is the introduction of

Fig. 5.—Photometric redshift estimation using the CWWspectral energy
distributions. The rms dispersion about this relations is 0.062 in redshift.
For the majority of the SDSS galaxies, the CWW templates perform
reasonably well (with the core of the photometric redshift relation having a
tight correlation with spectroscopic redshift, though about 0.03 below the
one-to-one relation). It is clear, however, that there remains a population of
galaxies for which the CWW templates do not well match the galaxy colors,
leading to an overestimate of the redshift of the galaxy.

Fig. 6.—Photometric redshift estimation using the Bruzual & Charlot
spectral energy distributions. The rms dispersion about this relations is
0.051 in redshift. While this dispersion is within a factor of 2 of that derived
from adapting the templates, it is also clear that there remain systematic
offsets in the photometric redshift relation with the Bruzual & Charlot
templates underpredicting (on average) the true spectroscopic redshift.

584 CSABAI ET AL. Vol. 125



magnitude priors in a Bayesian framework (Benı́tez 2000).
The redshift distribution of the main EDR sample is well fit-
ted by the relationship p(z) / z2 exp [�(z/zm)

1.5] for i d 18,
and a continuous prior can be constructed by measuring zm
in five different magnitude bins and interpolating. Since the
EDR spectroscopic sample redshift distribution is ‘‘ conta-
minated ’’ by LRGs at faint magnitudes and turns bimodal,
we have assumed a flat redshift/magnitude prior for i e 18.
Using this magnitude prior we run Bayesian estimation with
two further refinements: (1) setting the minimal photometric
error in each band to 0.03, which mimics the intrinsic fluctu-
ations in the colors of galaxies described by a same template
and produces more realistic redshift likelihoods, and (2)
using linear interpolation between the main CWW types to
improve the color resolution. Using this setup, the disper-
sion for the CWW templates without using any prior
decreases from 0.06 to 0.05, with an offset of 0.0156; intro-
ducing the prior described above further decreases the dis-
persion to �z = 0.0415 (see Fig. 7) for the whole sample, but
an offset of 0.0144 still remains.

It is clear from these tests that, while the template-fitting
methods should be directly applicable to the SDSS EDR
data, there remain significant systematics in either the tem-
plates or the photometric calibrations (or both) that will
add artifacts into any photometric redshift relation. We
must therefore recalibrate the template spectra to minimize
these systematic effects.

4. HYBRID PHOTOMETRIC REDSHIFT TECHNIQUES

Recently, new hybrid techniques have been developed to
calibrate template SEDs (Csabai et al. 2000; Budavári et al.
1999; Budavári et al. 2000; Budavári et al. 2001a), using a
training set of photometric data with spectroscopic red-
shifts. These combine the advantages of the empirical meth-
ods and SED fitting by iteratively improving the agreement
between the photometric measurements and the spectral
templates. The basic approach is to divide a set of galaxies

into a small number of spectral classes (using the standard
template based photometric redshifts) and then adjust the
template SEDs to match the mean colors of the galaxies in
these spectral classes. By repeating this classification and
repair procedure, the template spectra converge toward the
observed colors. In this paper we will not review the details
of these techniques, but direct the reader to Csabai et al.
(2000) and Budavári et al. (1999; 2000, 2001a) for a full
description of the algorithms. As we shall show in the fol-
lowing sections, the application of these techniques yields
more reliable photometric redshifts for the SDSS EDR cata-
log than the standard template fitting.

4.1. A Single Template: The Luminous Red Galaxy Sample

In addition to providing a training set for redshift estima-
tion in the SDSS data, the LRG sample is extremely useful
in identifying systematic uncertainties in the SDSS photo-
metric system. The LRG galaxies have a strong continuum
feature, namely, the break at around 4000 Å. As a result of
the depth of this feature, photometric redshifts are easily
estimated for these galaxies. In addition, because of the high
luminosity of these galaxies, they can be observed spectro-
scopically over a larger redshift range than the main galaxy
sample. Systematics in the photometric data can therefore
be identified as this spectral feature passes through the filters
as a function of redshift. In fact, we can simply use a single
SED for the LRG sample to test how we must optimize the
template spectra to accurately represent the observed
colors.

For the 6698 LRG galaxies we start with an initial tem-
plate spectrum selected from the CWW elliptical spectrum
and apply the training techniques of Budavári et al. (2000).
In Figure 8 we show the original CWW elliptical spectrum,
together with our reconstructed template. From these spec-
tra we can see that, in order to represent the colors of the
LRGs, we need a template spectrum that is redder than the
standard CWW elliptical. To demonstrate how well these
respective spectral templates cover the photometric obser-
vations, in Figure 9 we have plotted the colors of the EDR
LRG galaxies together with the traces of the original and
repaired spectral templates. The color-redshift relation for
the repaired spectrum clearly traces the locus of the LRG
galaxy sample more accurately than the original CWW
SED. The most obvious improvement in the comparative
colors is found in the u0�g0 and i0�z0 colors.

Although the repair procedure does not optimize directly
for photometric redshifts, the improvement in the match
between the observed and predicted colors should lead to
an improved photometric redshift relation for the LRG

Fig. 7.—Photometric redshift estimation, using the Bayesian method.
The rms dispersion about this relations is 0.042 in redshift.

Fig. 8.—Repaired (thick line) spectral template is redder than the
original elliptical galaxy template (thin line).

No. 2, 2003 PHOTOMETRIC REDSHIFTS FOR THE SDSS EDR 585



sample. Figure 10 compares the performance of the photo-
metric redshift estimators utilizing the two original and
repaired template SEDs. The repair procedure decreases the
overall scatter in the redshift relation from �z = 0.031 to
�z = 0.029. The main improvement is, however, that the
systematic underestimation of the redshift at redshifts
z > 0.2 is reduced. There remains a feature in the redshift
relation at z � 0.4, an increase by a factor of 2 in the disper-
sion. This arises as a result of a degeneracy in the u0�g0 ver-
sus g0�r0 colors in red galaxies at a redshift of z � 0.4 (the
color-color tracks loop on top of each other). The degener-
acy is a result of the Balmer break shifting between the g0

and r0 filters, making it difficult to estimate the exact redshift
(Budavári et al. 2001b). This problem cannot be removed by
using better template spectra.

4.2. The Distribution of Galaxy Types:
TheMain Galaxy Sample

The entire sample of the SDSS galaxies (including the
LRGs) poses a more difficult question because of the spec-
tral composition of the data. Spectral variations cannot be
neglected, and, in fact, one would like to get a continuous
parameterization of the spectral manifold. To accomplish
this, we adopt a variant of the ASQ algorithm (Budavári et

al. 2001a). First we reconstruct a small number of discrete
SEDs, using the techniques described previously, and then
we use an interpolation scheme to provide a continuous
distribution of spectral types that evenly sample between
the discrete spectra.

The training set consists of all galaxies with spectroscopic
redshifts and the five-band SDSS photometry. The large
number of galaxies is very promising, but the spectral reso-
lution of the reconstructed templates also depends on the
redshift baseline of the input galaxy training set. This red-
shift range is significantly smaller than, for example, those
derived from the Hubble Deep Field (Hogg et al. 1998;
Budavári et al. 2000). Ideally, one would like to have a train-
ing set that uniformly samples the color space to ensure that
no extra weight is assigned to any particular type of galaxy.
The limited color range of the galaxies with spectroscopic
redshifts will, therefore, ultimately limit the accuracy of our
final redshift relations.

The iterative ASQ method was applied to the initial set of
four CWW spectra. The spectral templates are found to
converge rapidly, in a few iterations. After 10 iterations the
repaired templates yield the photometric redshifts shown in
the top panels of Figure 11. The left panel shows all galaxies
assigned to the reddest template, and the galaxies assigned

Fig. 9.—Four SDSS colors of �6000 red galaxies vs. the redshift. The color trace of the repaired spectral template (thick line) follows the data better than
the trace of the original CWWE0 template (thin line).
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to the remaining three templates are given on the right
panel. The rms in the red and blue sample are �z = 0.028
and 0.05, respectively. This plot should be compared with
the redshift relations derived from the standard CWW tem-
plates, as shown in Figure 5. The training of these templates
both removes the systematics in the data and reduces the
dispersion about the photometric redshift relation.

The large estimation error for the late-type galaxies is
partly caused by the small number of discrete templates used
in the redshift estimation. We can improve on our estimates
if we derive an interpolation scheme that provides a finer
sampling of the distribution of late-type spectral templates.
Figure 12 illustrates the one-dimensional continuous spectral
manifold derived from the discrete SEDs by plotting equally
spaced (in type) interpolated spectra using a simple spline
interpolation. Based on the following tests, this simple inter-
polation scheme provides sufficient accuracy for mapping the
color distribution of late-type galaxies.

The first test of the interpolation scheme was a simple san-
ity check of the type histogram. If the interpolated spectra
are not physical, we expect to see humps at the basis tem-
plates (i.e., the colors of the majority of galaxies will be better
matched to the original templates than the interpolated tem-
plates). For this test, we used the known redshift of each gal-
axy in the training set and only fitted the spectral type (and
apparent luminosity). In Figure 13 we show this interpolated
type histogram. The smooth transition between interpolated
types shows no evidence for any discreteness in assigning a
spectral template to an individual galaxy. The second test of
the interpolation was to determine whether the interpolated
templates would evolve if we applied the ASQ training algo-
rithm. Fixing the four basis-trained SEDs, we introduced
three interpolated classes at the center of the intervals
between these spectral types. We find no significant change in
the spectral properties of these interpolated spectra as a func-
tion of iteration of the training algorithm.

The redshift estimates based on the continuous one-
dimensional type parameter are shown in the bottom panels

of Figure 11 for both the early- and late-type subsamples
(left and right, respectively). Compared with the top panels
of the discrete version (discussed previously), the new esti-
mates seem to be superior for the intrinsically blue subset
and slightly worse for the early types.

For early-type galaxies, it would be better to use the origi-
nal discrete template set to avoid the systematic overestima-
tion around z = 0.2 and 0.3. Since we want to have a simple
estimation for the spectral type, we would like to avoid
using a separate (discrete) template set for early-type gal-
axies, so we use the above scheme, keeping in mind the sys-
tematic errors and working on a better interpolated
template set. Note that SDSS will measure spectroscopic
redshift for most of the luminous early-type galaxies, so the
number of objects for which this problem arises is somewhat
smaller than in our test sample. However, for the less lumi-
nous early-type galaxies, the above problem still exists.

In terms of rms values of the scatter this translates into an
increase from �z = 0.028 to 0.029 for the red galaxies and a
decrease from �z = 0.05 to 0.04 for the blue ones. To quote
an rms for the entire training set would not be too meaning-
ful, because it depends on the ratio of the number of early-
and late-type galaxies. For the main SDSS galaxy sample
the scatter is �z = 0.035. We will use the above template-
fitting method with repaired interpolated templates to
create the EDR photometric redshift catalog.

5. COMPARISONS WITH INDEPENDENT
REDSHIFT SAMPLES

5.1. The 2dF and CNOC2 Redshift Samples

In the preceding sections we have used data from the
same subsets for training and testing. We now perform a
blind test, using the independent data sets. Details of the
2dF and CNOC2 data sets are given in x 2. Figure 14a com-
pares the spectroscopic and photometric redshifts for the
2dF spectroscopic sample. The dispersion in the photo-
metric redshift relation for these data is �z = 0.043. This

Fig. 10.—Photometric vs. spectroscopic redshifts for the EDR LRG set. Left: Original CWW spectral templates. Right: Repaired templates. One can see
that the redshift prediction improves, especially for higher redshifts.
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compares with the dispersion in the relation for the full
SDSS sample of �z = 0.035. The increase in the dispersion
arises from two effects. The r0-band magnitudes of the 2dF
data are intrinsically fainter than the SDSS spectroscopic
sample (by approximately 0.2 mag), and the 2dF data are

selected based on their Bj photographic magnitudes, which
will provide an intrinsically bluer galaxy sample than the r0-
selected SDSS data. As the dispersion in the redshift rela-
tion increases with limiting magnitude and for blue galaxies,
the difference in the observed photometric redshift relation
is not surprising.

To determine how well the templates extrapolate to
higher redshift data, we apply the photometric redshifts to
the CNOC2 data set (with a redshift range 0 < z < 0.7 and
a magnitude limit of r0 < 21.0). As we can see in Figure 14,
the dispersion in the relation increases for the fainter magni-
tude sample as a result of the increase in photometric error.
The average estimation error for the whole set is �z = 0.084.
If we consider only those galaxies with 17.8 < r0 < 19.5, the
uncertainty in the redshift estimates decreases to
�z = 0.061. In Figure 15 we show the absolute deviation
between the photometric and spectroscopic redshifts for the
CNOC2 galaxy sample as a function of r0. The cumulative
rms of these data (as a function of r0) is shown by the solid
line. For r0 < 21, the rms uncertainty about this relation is
0.1 in redshift.

Fig. 12.—Illustration of the one-dimensional–type manifold. A few
SEDs are plotted here for a equally spaced type parameter values. The
reddest and bluest SEDs are shown with the thick dark and light gray
curves, respectively.

Fig. 11.—Photometric redshifts of intrinsically red (left) and blue (right) galaxies. The figures show the spectroscopic vs. photometric redshifts for the four
discrete templates (top) and for the continuous type (bottom) estimators. The type interpolation makes things slightly worse for the red early-type galaxies
because of the type-redshift degeneracy, but the estimates for the late-type galaxies get significantly better.
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6. THE EARLY DATA RELEASE PHOTOMETRIC
REDSHIFT CATALOG

6.1. Selecting Galaxies from the EDRDatabase

The goal of our analysis has been to obtain photometric
redshifts for all SDSS galaxies in the Early Data Release.
We have, therefore, created the first EDR photo-z catalog

(version 1.0), which has now been included in the publicly
available EDR database.10

We used the template-fitting method with repaired inter-
polated templates (see x 4) to estimate photometric redshifts
in the above public catalog. Though the empirical methods
(see x 3.1) give a smaller estimation error, we have chosen to
use the template-fitting method, since it estimates not just
redshift but spectral type and rest-frame magnitude as well.
Also we hope that, with the accumulation of more precisely
calibrated data in further SDSS releases, the disadvantage
of this method will lessen.

The photometric redshift table (see Table 2 for the list of
parameters) in the database has more than 6 million entries,
one for every galaxy in the EDR. Each entry contains the
unique object ID (objID, for quick cross-matching), the
most likely redshift (z) and type (t). The uncertainties of
redshift and type are calculated from the 68% confidence
regions of the fit, assuming Gaussian errors. Note that the
true error distribution for higher redshift object is not
known, and probably not Gaussian. The elements of the
covariance matrix are stored in the database and repre-
sented by c_zz, c_tt, c_tz. The errors in columns zErr and
tErr are simply taken from the diagonal elements of the
covariance matrix. The �2 value of the fit (chiSq) measures
the absolute ‘‘ goodness ’’ of the fit. The catalog contains a
preliminary quality flag (quality), which scales between
zero and five, where the larger the number the more confi-
dent the photometric redshift. This flag is assigned to
objects in the process of fitting the confidence region and
seems to correlate with the rms of the photometric and spec-
troscopic redshifts. In the current version this correlation is
quite weak, and we would like to improve the calculation of
this flag in the next version.

10 Available at http://skyserver.sdss.org.

Fig. 13.—Distribution of interpolated spectral templates that fit the
observed colors in the EDR main galaxy sample. The smooth distribution
shows that no particular spectral template is preferred (i.e., the galaxies do
not fall into a small number of spectral types). This implies that the spline
used to interpolated between the trained spectral energy distributions
accurately maps the distribution of galaxy colors.

Fig. 14.—Checking the extrapolation capabilities of the photometric redshift estimator: the predicted vs. the spectroscopic redshift. Left: 2dF set. Right:
CNOC2 set; since most of these objects are too faint, we show with larger symbols the objects with reasonable SDSS photometry (17.8 < r < 19.5). Note the
different redshift range.
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In addition to the redshift estimates, physical parameters
derived from the estimated redshift are also stored in the
database. These include the distance modulus (dmod) for the
standard �CDM cosmology (�M = 0.3, �� = 0.7, h�1

units), rest-frame colors (rest_ug, rest_gr, rest_ri, res-
t_iz), and k-corrections (kcorr_u, kcorr_g, kcorr_r,
kcorr_i, kcorr_z) derived directly from the templates and
the rest-frame absolute magnitudes (absMag_u, absMag_g,
absMag_r, absMag_i, absMag_z) as computed from the dis-
tance modulus and k-correction,

M ¼ m�DMðzÞ � kðt; zÞ :

Access to these parameters is straightforward through the
Structured Query Language (SQL). A sample query to
extract the object identification and photometric redshift of
five galaxies in the redshift range of 0.2 < z < 0.3 would
look like this:

select top 5 objId, z from PhotoZ where z > 0.2 and
z < 0.3

All parameters stored in the SDSS database (including
the derived parameters) can be searched upon.

6.2. Caveats and Limitations of the
Current Photometric Redshifts

While, as the comparisons between the photometric and
spectroscopic redshift show, the current implementation of

Fig. 15.—Cumulative rms of the SDSS photometric redshift as a func-
tion of limiting magnitude. The points represent the absolute deviation
between the spectroscopic and photometric redshifts for the CNOC2
sample of galaxies. The solid line is the cumulative rms of the sample as a
function of the r0 magnitude. At a limiting magnitude of r0 < 21 the rms
error on the photometric redshift rises to 0.1.

TABLE 2

Photometric Redshift Parameters

Name Type Length Units Description

pId............................... int 4 . . . Unique ID for photoz version

rank............................. int 4 . . . Rank of the photoz determination; default is 0

version ....................... varchar 6 . . . Version of photoz code

class ........................... int 4 . . . Number describing the object type (galaxy = 1, QSO = tbd, . . .)

objID ........................... bigint 8 . . . Unique ID pointing to PhotoObj table

chiSq ........................... real 4 . . . The �2 value for the fit

z................................... real 4 . . . Photometric redshift

zErr............................. real 4 . . . Marginalized error of the photometric redshift

t................................... real 4 . . . Photometric SED type between 0 and 1

tErr............................. real 4 . . . Marginalized error of the photometric type

c_tt............................. real 4 . . . tt-element of covariancematrix

c_tz............................. real 4 . . . tz-element of covariance matrix

c_zz............................. real 4 . . . zz-element of covariancematrix

fitRadius ................... int 4 pixels Radius of area used for covariance fit

fitThreshold ............. real 4 . . . Probability threshold for fitting, peak normalized to 1

quality ....................... int 4 . . . Integer describing the quality (best:5, lowest 0)

dmod............................. real 4 mag Distancemodulus for�M = 0.3,�� = 0.7 cosmology

rest_ug ....................... real 4 mag Rest-frame u�g color

rest_gr ....................... real 4 mag Rest-frame g�r color

rest_ri ....................... real 4 mag Rest-frame r�i color

rest_iz ....................... real 4 mag Rest-frame i�z color

kcorr_u ....................... real 4 mag k-correction

kcorr_g ....................... real 4 mag k-correction

kcorr_r ....................... real 4 mag k-correction

kcorr_i ....................... real 4 mag k-correction

kcorr_z ....................... real 4 mag k-correction

absMag_u ..................... real 4 mag Rest-frame u0 absolute0 magnitude

absMag_g ..................... real 4 mag Rest-frame g0 absolute magnitude

absMag_r ..................... real 4 mag Rest-frame r0 absolute magnitude

absMag_i ..................... real 4 mag Rest-frame i0 absolute magnitude

absMag_z ..................... real 4 mag Rest-frame z0 absolute magnitude

Note.—Parameters contained in the photoz table of the SDSS Science Archive (http://skyserver.sdss.org). See text for more
details.
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SDSS photometric redshifts provides an accurate estimate
of the redshifts, there are a number of limitations and cav-
eats pertaining to the EDR data. We describe here the
results of a series of tests of the quality of the SDSS photom-
etry and how these issues affect the accuracy and possible
uses of the photometric redshifts in the EDR catalog. We
advise any potential user of the current photometric redshift
implementation to be aware of these caveats prior to under-
taking any statistical analysis.

Even though the photometric calibration of the SDSS
survey has been shown to be accurate to a few percent for
the SDSS standard stars, galaxy colors appear to have a
slight offset from SED-based estimated values (Eisenstein et
al. 2001). As part of this analysis of the SDSS EDR data we
compare measured colors not only with the spectrophoto-
metrically calibrated SEDs (e.g., CWW), but we have also
carried out experiments where small offsets were applied
before refining the template spectra. In this way we can iden-
tify systematic photometric offsets from the mean deviation
of the colors from the SEDs. The g0-band offset we found is
in the same sense as that given in Eisenstein et al. (2001) but
with a smaller amplitude of Dg0 � 0.05. All galaxies in the
SDSS catalog had this g0 offset applied prior to calculation
of the photometric redshifts.

Our SED reconstruction algorithm ideally requires a
training set with reasonably uniform redshift distribution
over a large baseline. The SDSS spectroscopic survey deliv-
ers excellent quality data for this kind of analyses. However,
the main galaxy sample has a median redshift of approxi-
mately 0.1, which does not enable the use photometric data
from different bands to constrain the SEDs at all wave-
lengths. In principle, if there exist photometric zero-point
uncertainties in the data, the reconstruction could introduce
artificial continuum spectral features in the templates,
which would make the extrapolation to higher redshifts
impossible (in a similar sense to the limitations of the empir-
ical techniques). The repaired spectral energy distributions
show no obvious trace of such features.

Finally, we consider how the increasing photometric
uncertainty at fainter magnitudes affects the redshift histo-
grams. In Figure 16 we show the redshift distributions in
different r0 magnitude bins 16–17, 17–18, 18–19, 19–20, and
20–21. The histograms built in different magnitude bins
peak around values consistent with published redshifts sur-
veys, and they move toward higher values as a function of
the magnitude. Beyond a magnitude limit of r0 > 21 arti-
facts are seen in the redshift histograms that are due to the
large photometric errors. We therefore advise caution when
using the current EDR photometric redshift catalog for gal-
axies with r0 > 21. Also, one should take into consideration
the fact that, for some objects, the photometric redshift
would be negative because the estimation is based on photo-
metric data with errors. But the algorithm allows only posi-
tive redshift values, so all negative redshifts pile up at z = 0.

7. CONCLUSIONS

We present the first application of photometric redshifts to
the SDSS EDR data. From a comparison of the photometric
and spectroscopic redshifts we find that the rms error in the
redshift relation is 0.035 for r0 < 18, rising to 0.1 at r0 < 21.
For magnitude intervals r0 < 21 the photometric redshift
relation and redshift histogram are well matched to existing
redshift surveys (with comparable median redshifts and dis-

persions). Implementing these redshift estimates in the SDSS
EDR database, together with derived quantities such as the
absolute magnitudes, k-corrections, and rest-frame colors,
we provide a simple interface to one of the largest publicly
accessible catalogs of photometric redshifts available to the
astronomical community. We conclude by providing a
description of the limitations and caveats present in the cur-
rent photometric redshift implementation. We caution all
users to be aware of these limitations before applying the
EDRphotometric redshifts in any statistical analyses.
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Fig. 16.—Redshift distributions plotted to show the trend with the
apparent r0-band magnitude. As expected, the histograms in the top figure
are shifted to the right as we go with r0 magnitude bins from 16 < r0 < 17 to
19.5 < r0 < 20.5. The histogram in the bottom figure is built using all
galaxies in the EDR catalog and has artifacts. We therefore advise caution
when using the current EDR photometric redshift catalog for galaxies with
r0 > 21.
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Budavári, T., et al. 2001, AJ, 122, 1163
———. 2001, AJ, 121, 3266
Coleman, G. D., Wu, C.-C., &Weedman, D.W. 1980, ApJS, 43, 393
Colless,M.M., et al. 2001,MNRAS, 328, 1039
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